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I. PIPPARD’S COHERENCE LENGTH

This material was covered in Lecture 6, not Lecture 3. It should probably move off to another Lecture...

Pippard deduced the existence of another length scale in superconductors from measurements of the
magnetic penetration depth λ as a function of impurity content in the superconductor. He used pure
Sn as the starting material and then added various amounts of In to make alloys containing up to 3%
In in solid solution. Pippard found that the zero temperature penetration depth was about 60 nm for
pure Sn, but increased systematically as In was added, going up to 100 nm at 3% In. At the same time
he found that the Tc and Hc of these alloyed superconductors were the same as for pure Sn, hence the
thermodynamic properties were essentially unchanged.

The London penetration depth, which we take to be a temperature independent quantity based on the

total electron density (n) of the metal is λL =
√

m
µ0ne2

. For Sn it has a value of 53 nm. But the London

equations, based on ~Js = − 1
Λ
~A has no dependence on ’dirt’. On the other hand, Ohm’s law is clearly

dependent on the mean free path of the normal electrons: ~Jn =
ne2`mfp

mvF
~E. Pippard proposed that the

finite mean free path of the normal fluid electrons reduces the effectiveness of the superfluid response in

screening. He proposed ~Js = − ξ(`mfp)
ξ0

1
Λ
~A, where ξ0 is a constant length and ξ(`mfp) is a length that

depends on the mean free path as,

1

ξ(`mfp)
=

1

ξ0
+

1

`mfp

Note that as a result, ξ(`mfp) ≤ ξ0. Hence the factor in the modified London equation reduces the

superfluid response ( ~Js) for a given perturbation ( ~A). This in turn enhances the penetration of magnetic
field into the superconductor. Define a ’re-normalized’ London constant,

Λ′ := Λ
ξ0

ξ(`mfp)
= µ0λ

2
L

ξ0
ξ(`mfp)

:= µ0λ
2

and we now call λ the magnetic penetration depth. It is related to the London penetration depth as

λ = λL

√
ξ0

ξ(`mfp)
= λL

√
1 + ξ0/`mfp

This equation explains the dependence of Pippard’s measured penetration depth on the mean free path of
quasiparticles (non-superconducting electrons) in the Sn/In alloys. The equation suggests that disordered
superconductors will show an enhanced penetration depth (suppressed screening) without showing a
decrease in Tc or Hc. In general, one will measure an enhanced screening length unless one has `mfp � ξ0,
which is called the ’clean limit’. Notice that in the ’dirty limit’, meaning `mfp � ξ0, the screening length

is given by λdirty =
√

λ2
Lξ0
`mfp

, which depends on three length scales! The fact that superconductivity

survives even in the presence of strong scattering of the non-superconducting electrons is remarkable,
and is often referred to as Anderson’s theorem, to be discussed later.

A. The Coherence Length

It turns out that Pippard had discovered the existence of the ’coherence length’, a fundamental length
scale later introduced formally by BCS theory. Pippard deduced that this length scale is related to the
smallest possible size of a ’superconducting wavepacket’. Here is the argument. Only electrons within
kBTc of the Fermi energy can play a role in the superconducting response that sets in at Tc (BCS
shows that all electrons play a role in superconductivity). The momentum range of these electrons is



2

∆p = kBTc

vF
. Hence by the Heisenberg uncertainty principle, the size scale is ∆x ≥ ~

∆p = ~vF
kBTc

. He then

wrote down a more exact relation for the coherence length: ξ0 = a ~vF
kBTc

, and deduced that a = 0.15

from his screening length data on Sn/In alloys. Years later, BCS showed that this expression is correct,
and found a = 0.18. In Ginzburg-Landau theory, the coherence length is a measure of how quickly the
magnitude of the superconducting order parameter can vary in space. In BCS theory ξ0 can be roughly
interpreted as the size of a Cooper pair in real-space.

Note that high carrier density superconductors with low Tc values, like Al and Sn, have long coherence
lengths. In this case ξ0 � λL, and these are known as extreme type-I superconductors. We shall see
later that superconductors in this limit have a large and positive energy cost for creating a superconduc-
tor/normal boundary in their bulk. Hence superconductivity in these materials tends to be destroyed
suddenly and completely at the thermodynamic critical field Hc.

II. MICROSCOPIC ORIGIN OF THE PAIRING INTERACTION

A. Electron-Phonon Pairing Interaction

What is V~k,~k′? Where does it come from and how can we control or modify it? How can the electron-

phonon mechanism be generalized to other types of pairing mechanisms?
The key physics is the retarded interaction between two electrons mediated by the relatively slowly
moving ion lattice. We will build up a calculation of V~k,~k′ in steps, starting with the static screening

case and then taking on the dynamic screening of both electrons and ions in a solid.

B. Electron in Free Space

In free space electrons interact by means of the bare Coulomb interaction: V (r) = e2/4πε0r. We
will work in momentum space, so look at the Coulomb interaction there. The Fourier transform is

proportional to V (q) = e2/ε0q
2, where ~q = ~k − ~k′ is the momentum transfer in scattering an electron

from momentum ~k to momentum ~k′. This V (q) is a purely repulsive interaction, as expected.

C. Two-Electron Static Interaction in a Solid

The Cooper electrons are actually in a solid, which is a highly polarizable medium. For the moment
we shall consider just the polarization properties of the electron gas. Consider a metal in electrostatic

equilibrium ( ~E = 0 inside). Now add a single impurity charge and calculate its potential everywhere in
the solid. In other words, we will add an external charge density ρext and calculate how the medium
responds. The electrons are very light and mobile compared to the ions, so we shall focus on just their
response.

The calculation of static screening in an electron gas is done in Kittel Introduction to Solid State
Physics Chapter 10, or in Ashcroft and Mermin Solid State Physics Chapters 17 and 26.

The constitutive equation for a linear dielectric is ~D = ε0ε ~E = ε0 ~E + ~P , where ε is the dielec-

tric function and ~P is the polarization. From Maxwell’s equations we have O · ~D = ρext, whereas

O · ~E = ρtotal/ε0 = (ρext + ρbound) /ε0, where the charges are distinguished by being either externally
imposed or bound. The bound charge arises from the screening response of the electrons and ions in the

solid. Note that one can calculate the dielectric function ε as ε = |~D|
ε0|~E|

= ρext

ρTotal
.

Consider a solid made up of positive ions and a gas of free electrons. One can create an externally
imposed positive charge distribution by mechanically deforming the lattice, for example, thus creating
an externally induced sinusoidal charge density of wavenumber q as ρext ∼ ρ0 sin(qx). It can be shown
(Kittel, Ashcroft+Mermin cited above) that one can write the resulting potential associated with this
disturbance as,

V (q) = e2

ε0ε(q)q2
, with ε(q) = 1 +

k2TF

q2 . Here kTF is the Thomas-Fermi screening wavenumber and is

defined as k2
TF ≡ 3

2
n0e

2

ε0EF
, where n0 is the electron density.

Thus the static screened Coulomb interaction is given by,
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V (q) = e2/ε0
q2+k2TF

.

Fourier transforming back to real space gives the screened Coulomb potential:

V (r) = e2

4πε0r
e−kTF r (also known as the Yukawa potential in nuclear physics).

The interaction is still 1/r at small distances, but is exponentially suppressed on the scale of 1/kTF and
beyond. This is the result of “screening”, the metal re-distributes charge in such a way as to “hide” the
exernally-imposed charge, as best as possible.

For the case of Al, one can plug in the numbers and find that λTF = 1/kTF = 0.5 Angstoms, about
the Bohr radius of the Hydrogen atom! This very short length scale is of atomic dimensions, calling
in to question whether the calculation is valid in this limit. Nevertheless it shows that the electronic
screening length in metals is quite short.

Calculations by Mott using this potential are able to account for the residual resistivity of Cu (valence
1) alloyed with impurities of Zn (valence 2), Ga (valence 3), Ge (valence 4), and As (valence 5).
Note that even with static screening the interaction of two electrons is still entirely repulsive.

D. Dynamic Screening in a Solid

The key physics is that the electrons move quickly (vF = 2 × 106 m/s) and the ions move slowly
(sound speed is 103 to 104 m/s). Thus the electrons are able to screen out externally imposed charge on
the time scale of the inverse electron plasma frequency 1/ωp,e ∼ 10−16 s, whereas the lattice responds on

much longer time scales. Here the electron plasma frequency is defined as ω2
p,e ≡ n0z

2e2

ε0me
, where n0 is the

atom number density, z is the valence of the atoms, and me is the electron mass. The plasma frequency
is the maximum ”sloshing frequency” of the electron gas in the metal. Likewise one can treat the ions

as a charged fluid and define an ion plasma frequency as ω2
pi ≡ n0z

2e2

ε0M
, where M is the ion mass. This

turns out to be a much lower frequency scale, typically 1013 Hz.

We will transform the Maxwell constitutive relations into momentum space: qE(q) = ρTotal(q)
ε0

, and

qD(q) = ρext(q), so that ε(q, ω) = D(q)
ε0E(q) = ρext(q)

ρTotal(q)
= ρext(q)

ρi(q)+ρe(q)+ρext(q)
.

Thus the dynamically screened Coulomb interaction is assumed to be given by,

V (q, ω) = e2/ε0
ε(q,ω)q2 .

Once again imagine imposing an external charge that is modulated in both time and space (ρext ∼
ρ0e

i(~q·~r−ωt)). Treating the ion lattice as a fluid (the ’Jellium model’) that responds to this external
perturbation (see Kittel, Ashcroft and Mermin, or deGennes) yields

ε(q, ω) = 1− ω2
p,i

ω2 +
k2TF

q2 .

Note that this expression only works in a limited range of frequency and is incorrect in the ω → 0 limit
(where it ignores the ion-ion repulsion), and the ω →∞ limit where it ignores the electron screening.

The dielectric function can also be written over a common denominator as

ε(q, ω) =
ω2q2−ω2

p,iq
2+k2TFω

2

ω2q2 .

The dynamically screened Coulomb interaction for a dynamic perturbation at (q, ω) is,

V (q, ω) = e2/ε0

q2+k2TF−
ω2
p,i

ω2 q2

In a solid there is a naturally occurring (spontaneous) charge perturbation at a specific frequency
and wavenumber. This collective excitation of the ions and electrons corresponds to a situation where
no external charge is imposed (ρext = 0), and corresponds to the zero of the dielectric function written

above (recall that ε(q, ω) = ρext(q)
ρTotal(q)

). Using the expression for ε(q, ω) in the previous paragraph, this

leads to a collective mode dispersion relation of ωq = ωp,i
q√

q2+k2TF

, where ωq is the frequency of this

longitudinal acoustic phonon mode. This expression shows that the phonon has a linear dispersion
ωq ∼ ωp,i q

kTF
at small q on the scale of the Brillouin zone edge and below (since kTF >> kBZ typically).

The pre-factor of q can be compared to the speed of sound in the metal. For Al this predicts a sound
speed of 9000 m/s, whereas it is measured to be about 6400 m/s at room temperature.
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Using the phonon mode frequency in place the ion plasma frequency (i.e. substituting ω2
p,i =

ω2
q

q2 (q2 + k2
TF )), the electron-phonon pairing interaction can now be written as,

V (q, ω) = e2/ε0
q2+k2TF

[
1 +

ω2
q

ω2−ω2
q

]
= VTF,Coulomb(q) + Vel−ph(q, ω)

Note that the first term is purely repulsive, while the second term can be attractive, and both are on
the same order of magnitude. Clearly for ω < ωq this interaction is attractive, and resembles to some
extent the simple attractive interaction introduced by Cooper. (Also note that ωq < ωp,i.)

Now we re-interpret this V (q, ω) as the pairing interaction in the context of the Cooper pairing scenario

(see Ashcroft and Mermin, Solid State Physics, pages 518-519). First we recall that ~q = ~k − ~k′, the

momentum transfer when a pair scatters from states labeled by (~k,−~k) to states labeled by (~k′,−~k′). In

general, these two single-particle states ~k and ~k′ can have different energy. We can interpret ~ω as the
energy difference between the two states: ω = εk−εk′

~ . Some comments. First, since the phonon energy
is limited by the Debye frequency ΩD, the two sets of states involved in the scattering process must
have an energy difference less than this to enjoy the attractive interaction. The second comment is that
the large negative interaction energy arises from ’overscreening’ of the electron-electron interaction, as
mediated by the ions/phonons.

https://en.wikipedia.org/wiki/Debye_model#Debye_frequency
https://www.physics.umd.edu/courses/Phys798C/AnlageSpring22/OverScreening.pdf
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